Search results for "PMNS matrix"
showing 3 items of 3 documents
The Cabibbo angle as a universal seed for quark and lepton mixings
2015
A model-independent ansatz to describe lepton and quark mixing in a unified way is suggested based upon the Cabibbo angle. In our framework neutrinos mix in a "Bi-Large" fashion, while the charged leptons mix as the "down-type" quarks do. In addition to the standard Wolfenstein parameters (lambda, A) two other free parameters are needed to specify the physical lepton mixing matrix. Through this simple assumption one makes specific predictions for the atmospheric angle as well as leptonic CP violation in good agreement with current observations.
Non-Unitarity of the lepton mixing matrix at the European spallation source
2022
If neutrinos get mass through the exchange of lepton mediators, as in seesaw schemes, the neutrino appearance probabilities in oscillation experiments are modified due to effective nonunitarity of the lepton mixing matrix. This also leads to new CP phases and an ambiguity in underpinning the ''conventional'' phase of the three-neutrino paradigm. We study the CP sensitivities of various setups based at the European spallation source neutrino super-beam (ESSnuSB) experiment in the presence of nonunitarity. We also examine its potential in constraining the associated new physics parameters. Moreover, we show how the combination of DUNE and ESSnuSB can help further improve the sensitivities on …
A Comprehensive Mechanism Reproducing the Mass and Mixing Parameters of Quarks and Leptons
2013
It is shown that if, from the starting point of a universal rank-one mass matrix long favored by phenomenologists, one adds the assumption that it rotates (changes its orientation in generation space) with changing scale, one can reproduce, in terms of only six real parameters, all the 16 mass ratios and mixing parameters of quarks and leptons. Of these 16 quantities so reproduced, 10 for which data exist for direct comparison (i.e. the CKM elements including the CP-violating phase, the angles theta(12), theta(13), theta(23) in nu-oscillation, and the masses m(c), m(mu), m(e)) agree well with experiment, mostly to within experimental errors; four others (m(s), m(u), m(d), m(nu 2)), the expe…